ETH Zürich Institute of Theoretical Computer Science Prof. Rasmus Kyng Prof. Johannes Lengler Prof. Vera Traub

Algorithmen und Wahrscheinlichkeit Exercise Session 3

Exercise 1 – Quantitiative Hall's Theorem

For a bipartite graph $G = (A \cup B, E)$, with |A| = |B| = n, we define a *defficiency* of G (deff(G)) to be a maximum over $X \subset A$ of |X| - |N(X)|. The Hall's theorem states that G has a perfect matching if and only if the defficiency of G is 0. We will show a quantitative version of Hall's theorem, using the Hall's theorem itself.

Specifically, show that the size of the largest (in terms of the number of edges) matching M in the bipartite graph G is equal to n - deff(G).

- 1. Show that if deff(G) = k then every matching M has size $|M| \le n k$. (*Hint:* this can be done with a direct argument.)
- 2. Show that when deff $(G) \leq k$, there is a matching M in G of size at least n-k. (*Hint:* modify the graph G by adding k vertices on each side, and apply Hall's theorem to the modified graph G'.) (If you feel that this is a bit too difficult to solve for your group during the exercise session, you can split this into easier sub-problems explain the construction of the graph G' from the solution to students, and ask them to show the Hall's condition, and deduce what we want from Hall's theorem)

Solution 1

- 1. Consider a matching M, and a set $X \subset A$ with $|X| |N(X)| \ge k$. Note that matching M has at most |N(X)| edges incident with vertices in X. The number of edges incident with vertices in $A \setminus X$ is clearly at most $|A \setminus X| = n |X|$. As such, the total number of edges in M is $|M| \le |N(X)| + n |X| \le n k$.
- 2. Take a graph $G' = (A' \cup B', E')$ obtained by adding k vertices on each side in G. That is $A' = A \cup A_1$ and $B' = B \cup B_1$, where $|A_1| = |B_1| = k$, and we connect all vertices from A_1 with all vertices from B'; as well as we connect all vertices from B_1 with all vertices from A'. We will argue that G' satisfies the Halls condition. Indeed, for any set $X \subset A'$, either $X \cap A_1 \neq \emptyset$, in which case $|N_G(X)| = |B'| = n + k \ge |X|$. or $X \subset A$, in which case $|N_{G'}(X)| = |N_G(X) \cup B_1| = |N_G(X)| + k \ge |X| \text{deff}(G) + k = |X|$.

Applying Hall's theorem now, we conclude that G' has a perfect matching M'. In the perfect matching M' at most k vertices from A is matched to vertices in B_1 (since $|B_1| = k$), so the remaining n - k vertices are matched through M' to some vertices in B.

Exercise 2 – Köning's Theorem

For a graph G = (V, E), we say that a subset of vertices $S \subset V$ is a *vertex cover* of G if every edge $e \in E$ is incident to at least one vertex in S. Equivalently, S is a vertex cover of G, if the induced graph $G[V \setminus S]$ has no edges.

Using the quantitative version of Hall's Theorem (Exercise 1), we will show that in a bipartite graph $G = (A \cup B, E)$ the size of the smallest vertex cover is equal to the size of the largest matching in G.

- 1. Show that if S is any vertex cover in G, and M is a matching in G, then $|M| \leq |S|$.
- 2. Show that if deff(G) = k, there is a vertex cover of size n k. Conclude that the size of the largest matching is equal to the size of the smallest vertex cover.

Solution 2

- 1. By the definition of vertex cover, each edge of M is incident with at least one vertex from S. Consider a mapping $f: M \to S$ mapping each edge $m \in M$ to a vertex $s \in S$ incident with m. By the definition of matching, every vertex of S is incident with at most one edge of M, therefore f is a one-to-one function, implying that $|M| \leq |S|$.
- 2. Let $X \subset A$ be a set with |X| |N(X)| = k. Then $S := (A \setminus X) \cup N(X)$ is a vertex cover of S (for any edge incident with X it is covered by N(X), and remaining edges are covered by $A \setminus X$). Moreover |S| = n |X| + |N(X)| = n k.

Exercise 3 – Traveling Salesman Problem

We consider a Traveling Salesman Problem on a complete graph K_n , where the cost function $\ell : \binom{[n]}{2} \to \mathbb{R}$ satisfies a weaker version of triangle inequality. Specifically, assume that for every $x, y, z \in [n]$ we have

$$\ell(x, z) \le 1.1(\ell(x, y) + \ell(y, z)).$$

Show that the algorithm presented in the lecture provides $O(n^{\log_2(1.1)})$ -approximation for the TSP problem.

Solution 3

We can show by induction that for any path $v_0, v_1, \ldots, v_2, \ldots, v_j$ of length j, s.t. $2^k < j \le 2^{k+1}$, we have

$$\ell(v_0, v_j) \le 1.1^{k+1} \sum_{i=0}^{j-1} \ell(v_i, v_{i+1}),$$

by splitting the path $v_0, \ldots v_j$ into two parts $v_0, \ldots v_{\lfloor j/2 \rfloor}$ and $v_{\lfloor j/2 \rfloor}, \ldots, v_j$. Since any path without repeated vertices in a graph G has at most n-1 edges, we have for any path without repeated vertices

$$\ell(v_0, v_j) \le 1.1^{\lceil \log_2 n \rceil} \sum_{i=0}^{j-1} \ell(v_i, v_{i+1}) \le O(n^{\log_2 1.1}) \sum_{i=0}^{j-1} \ell(v_i, v_{i+1}).$$

Together with the rest of the argument presented during the lecture, this implies a $O(n^{\log_2 1.1})$ algorithm form the TSP.