
ETH Zürich
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Exercise 1 – Quantitiative Hall’s Theorem

For a bipartite graph G = (A ∪B,E), with |A| = |B| = n, we define a defficiency of G (deff(G))
to be a maximum over X ⊂ A of |X| − |N(X)|. The Hall’s theorem states that G has a perfect
matching if and only if the defficiency of G is 0. We will show a quantitative version of Hall’s
theorem, using the Hall’s theorem itself.

Specifically, show that the size of the largest (in terms of the number of edges) matching M in the
bipartite graph G is equal to n− deff(G).

1. Show that if deff(G) = k then every matching M has size |M | ≤ n − k. (Hint: this can be
done with a direct argument.)

2. Show that when deff(G) ≤ k, there is a matching M in G of size at least n−k. (Hint: modify
the graph G by adding k vertices on each side, and apply Hall’s theorem to the modified
graph G′.) (If you feel that this is a bit too difficult to solve for your group during the exercise
session, you can split this into easier sub-problems — explain the construction of the graph
G′ from the solution to students, and ask them to show the Hall’s condition, and deduce what
we want from Hall’s theorem)

Solution 1
1. Consider a matching M , and a set X ⊂ A with |X| − |N(X)| ≥ k. Note that matching M

has at most |N(X)| edges incident with vertices in X. The number of edges incident with
vertices in A \X is clearly at most |A \X| = n− |X|. As such, the total number of edges in
M is |M | ≤ |N(X)|+ n− |X| ≤ n− k.

2. Take a graph G′ = (A′ ∪ B′, E′) obtained by adding k vertices on each side in G. That is
A′ = A ∪ A1 and B′ = B ∪ B1, where |A1| = |B1| = k, and we connect all vertices from
A1 with all vertices from B′; as well as we connect all vertices from B1 with all vertices
from A′. We will argue that G′ satisfies the Halls condition. Indeed, for any set X ⊂ A′,
either X ∩ A1 ̸= ∅, in which case |NG(X)| = |B′| = n + k ≥ |X|. or X ⊂ A, in which case
|NG′(X)| = |NG(X) ∪B1| = |NG(X)|+ k ≥ |X| − deff(G) + k = |X|.

Applying Hall’s theorem now, we conclude that G′ has a perfect matching M ′. In the perfect
matching M ′ at most k vertices from A is matched to vertices in B1 (since |B1| = k), so the
remaining n− k vertices are matched through M ′ to some vertices in B.

Exercise 2 – Köning’s Theorem

For a graph G = (V,E), we say that a subset of vertices S ⊂ V is a vertex cover of G if every edge
e ∈ E is incident to at least one vertex in S. Equivalently, S is a vertex cover of G, if the induced
graph G[V \ S] has no edges.

Using the quantitative version of Hall’s Theorem (Exercise 1), we will show that in a bipartite
graph G = (A ∪ B,E) the size of the smallest vertex cover is equal to the size of the largest
matching in G.

1. Show that if S is any vertex cover in G, and M is a matching in G, then |M | ≤ |S|.

2. Show that if deff(G) = k, there is a vertex cover of size n− k. Conclude that the size of the
largest matching is equal to the size of the smallest vertex cover.



Solution 2
1. By the definition of vertex cover, each edge of M is incident with at least one vertex from

S. Consider a mapping f : M → S mapping each edge m ∈ M to a vertex s ∈ S incident
with m. By the definition of matching, every vertex of S is incident with at most one edge
of M , therefore f is a one-to-one function, implying that |M | ≤ |S|.

2. Let X ⊂ A be a set with |X| − |N(X)| = k. Then S := (A \X) ∪N(X) is a vertex cover of
S (for any edge incident with X it is covered by N(X), and remaining edges are covered by
A \X). Moreover |S| = n− |X|+ |N(X)| = n− k.

Exercise 3 – Traveling Salesman Problem

We consider a Traveling Salesman Problem on a complete graph Kn, where the cost function
ℓ :

(
[n]
2

)
→ R satisfies a weaker version of triangle inequality. Specifically, assume that for every

x, y, z ∈ [n] we have
ℓ(x, z) ≤ 1.1(ℓ(x, y) + ℓ(y, z)).

Show that the algorithm presented in the lecture provides O(nlog2(1.1))-approximation for the TSP
problem.

Solution 3
We can show by induction that for any path v0, v1, . . . v2, . . . vj of length j, s.t. 2k < j ≤ 2k+1, we
have

ℓ(v0, vj) ≤ 1.1k+1

j−1∑
i=0

ℓ(vi, vi+1),

by splitting the path v0, . . . vj into two parts v0, . . . v⌊j/2⌋ and v⌊j/2⌋, . . . , vj . Since any path without
repeated vertices in a graph G has at most n − 1 edges, we have for any path without repeated
vertices

ℓ(v0, vj) ≤ 1.1⌈log2 n⌉
j−1∑
i=0

ℓ(vi, vi+1) ≤ O(nlog2 1.1)

j−1∑
i=0

ℓ(vi, vi+1).

Together with the rest of the argument presented during the lecture, this implies a O(nlog2 1.1)
algorithm form the TSP.


