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Exercise 1 — Quantitiative Hall’s Theorem

For a bipartite graph G = (AU B, E), with |A| = |B| = n, we define a defficiency of G (deff(G))
to be a maximum over X C A of |X| — |[N(X)|. The Hall’s theorem states that G has a perfect
matching if and only if the defficiency of G is 0. We will show a quantitative version of Hall’s
theorem, using the Hall’s theorem itself.

Specifically, show that the size of the largest (in terms of the number of edges) matching M in the
bipartite graph G is equal to n — deff(G).

1. Show that if deff(G) = k then every matching M has size |M| < n — k. (Hint: this can be
done with a direct argument.)

2. Show that when deff(G) < k, there is a matching M in G of size at least n— k. (Hint: modify
the graph G by adding k vertices on each side, and apply Hall’s theorem to the modified
graph G'.) (If you feel that this is a bit too difficult to solve for your group during the exercise
session, you can split this into easier sub-problems — explain the construction of the graph
G’ from the solution to students, and ask them to show the Hall’s condition, and deduce what
we want from Hall’s theorem)

Solution 1

1. Consider a matching M, and a set X C A with |X| — |[N(X)| > k. Note that matching M
has at most |N(X)| edges incident with vertices in X. The number of edges incident with
vertices in A\ X is clearly at most |A\ X| =n — | X]|. As such, the total number of edges in
Mis M| <|NX)|+n—|X|<n-—Ek.

2. Take a graph G’ = (A’ U B’, E’) obtained by adding k vertices on each side in G. That is
A" = AU A; and B’ = BU By, where |41]| = |B1| = k, and we connect all vertices from
Ay with all vertices from B’; as well as we connect all vertices from B; with all vertices
from A’. We will argue that G’ satisfies the Halls condition. Indeed, for any set X C A’,
either X N A; # 0, in which case |[Ng(X)| = |B'| =n+k > |X|. or X C A, in which case
[Nor(X)| = [NG(X) U By| = [Ne(X)| + & > | X| — deff(G) + k = | X].

Applying Hall’s theorem now, we conclude that G’ has a perfect matching M’. In the perfect
matching M’ at most k vertices from A is matched to vertices in Bj (since |B;| = k), so the
remaining n — k vertices are matched through M’ to some vertices in B.

Exercise 2 — Koning’s Theorem

For a graph G = (V, E), we say that a subset of vertices S C V is a vertex cover of G if every edge
e € F is incident to at least one vertex in S. Equivalently, S is a vertex cover of G, if the induced
graph G[V \ S] has no edges.

Using the quantitative version of Hall’s Theorem (Exercise 1), we will show that in a bipartite
graph G = (AU B, E) the size of the smallest vertex cover is equal to the size of the largest
matching in G.

1. Show that if S is any vertex cover in G, and M is a matching in G, then |M| < |S].

2. Show that if deff(G) = k, there is a vertex cover of size n — k. Conclude that the size of the
largest matching is equal to the size of the smallest vertex cover.



Solution 2

1. By the definition of vertex cover, each edge of M is incident with at least one vertex from
S. Consider a mapping f : M — S mapping each edge m € M to a vertex s € S incident
with m. By the definition of matching, every vertex of S is incident with at most one edge
of M, therefore f is a one-to-one function, implying that |[M| < |S|.

2. Let X C A be a set with |X|— |N(X)| = k. Then S := (A\ X)U N(X) is a vertex cover of
S (for any edge incident with X it is covered by N(X), and remaining edges are covered by
A\ X). Moreover |S|=n— | X|+ |N(X)|=n—k.

Exercise 3 — Traveling Salesman Problem

We consider a Traveling Salesman Problem on a complete graph K,, where the cost function
2 ([Z]) — R satisfies a weaker version of triangle inequality. Specifically, assume that for every
x,y, z € [n] we have

Uz, z) < 1.1(0(z,y) + £(y, 2)).

Show that the algorithm presented in the lecture provides O(n!°82(1-D)-approximation for the TSP
problem.

Solution 3

We can show by induction that for any path vg,v1,...v9,...v; of length j, s.t. 2k < j < 2k we

have
j—1

é(’l]o, Uj) S 1.1k+1 Z é(vi, ’Ui+1),
i=0
by splitting the path vy, ... v; into two parts vo, ... v /2 and v|;/2),. .., v;. Since any path without
repeated vertices in a graph G has at most n — 1 edges, we have for any path without repeated
vertices

j—1 j—1
E(vo,vj) < 1.1“Og2 nl Zé(vi,viﬂ) < O(nlng 1'1) Zé(vi,viﬂ).
1=0 =0

Together with the rest of the argument presented during the lecture, this implies a O(n'°8211)
algorithm form the TSP.



